EXERCÍCIOS DE REVISÃO - 4º. BIMESTRE - MAT A- PROB. OSMAR

MÓDULO 18: O PROBLEMA DA FILA:

Permutação Simples $P_n = n!$

- 1. "Quantos anagramas podemos construir com o nome HEITOR?" Resp 6!
- 2. "Sobre o fatorial de um número, julgue as afirmativas a seguir.

I).
$$0! + 1! = 2 (V)$$

II).
$$5! - 3! = 2! (F)$$

III)
$$2! \cdot 4! = 8!$$
 (F)

3. (Cetro concursos) Analise as sentenças V ou F.

$$1.4! + 3! = 7!$$
 (F)

II.
$$4! \cdot 3! = 12!$$
 (F)

III.
$$5! + 5! = 2 \cdot 5!$$
 (V)

- 4. Quantos anagramas há na palavra OSMAR? Resp. 120
- 5. Quantos anagramas a palavra OSMAR começa com vogal? Resp 48
- 6. Simplifique:

Resp 2022

7. Considere os anagramas da palavra CADERNO. Quantas delas começam e terminam por vogal? Resp 720

Arranjos Simples: Fórmula

Permutação com Repetição

$$A_{n,p} = \frac{n!}{(n-p)!}$$

$$P_n^{(\alpha,\beta,\ldots,\gamma)} = \frac{n!}{\alpha!\,\beta!\ldots\gamma!}$$

- 1. Determinar a quantidade de filas que podem ser formadas escolhendo 4 pessoas dentre doze disponíveis? Resp. 11.880
- 2. Considere a palavra SELETIVO. Quantos anagramas podemos formar? Resp 20.160
- 3. Quantos anagramas a palavra BANANA começam com uma consoante? Resp 30
- 4. Quantos anagramas podemos formar com a palavra MATEMÁTICA? Resp. 151.200
- 5. "Quantos anagramas com a palavra BRREIRA podem ser formados, sendo que deverá começar com a letra B?" Resp. 420

MÓDULO 19 : O PROBLEMA DO GRUPO

Combinação Simples: Fórmula

$$C_{n,p} = \frac{n!}{p!(n-p)!}$$

1. Em uma competição de vôlei de praia participaram n duplas. Ao final, todos os adversários se cumprimentaram uma única vez com apertos de mãos. Sabendo-se que

foram contados 180 apertos de mãos, podemos concluir que n é igual a quanto? Resp . 10

- 2. Numa lanchonete são vendidos sucos de 8 sabores diferentes, sendo que 3 são de frutas cítricas e os demais de frutas silvestres. De quantas maneiras pode-se escolher 3 sucos de sabores diferentes, sendo que pelo menos 2 deles sejam de frutas silvestres? Resp 40
- **3.** Em uma sala de aula existem 12 alunas, onde uma delas chama-se Carla, e 8 alunos, onde um deles atende pelo nome de Luiz. Deseja-se formar comissões de 5 alunas e 4 alunos. Determine o número de comissões, onde simultaneamente participam Carla e Luiz. Resp. 11.550
- 4. Um pesquisador científico precisa escolher três cobaias, num grupo de oito cobaias. Determine o número de maneiras que ele pode realizar a escolha. Resp 120
- **5.** No jogo de basquetebol, cada time entra em quadra com cinco jogadores. Considerando-se que um time para disputar um campeonato necessita de pelo menos 12 jogadores, e que desses, 2 são titulares absolutos, determine o número de equipes que o técnico poderá formar com o restante dos jogadores, sendo que eles atuam em qualquer posição. Resp 120.

MÓDULO 20 -PROBABILIDADES.

- 1.Se lançarmos dois dados ao mesmo tempo, qual a probabilidade de dois números iguais ficarem voltados para cima? Resp. 1/6
- 2. Um saco contém 8 bolas idênticas, mas com cores diferentes: três bolas azuis, quatro vermelhas e uma amarela. Retira-se ao acaso uma bola. Qual a probabilidade da bola retirada ser azul? Resp. 3/8
- 3. Qual a probabilidade de tirar um ás ao retirar ao acaso uma carta de um baralho com 52 cartas, que possui quatro naipes (copas, paus, ouros e espadas) sendo 1 ás em cada naipe? Resp 1/13
- 4. Um dado não tendencioso de seis faces será lançado duas vezes. A probabilidade de que o maior valor obtido nos lançamentos seja maior ou igual do que 3 é igual a quanto? Resp. 8/9
- 5. Considere um hexágono convexo com vértices A, B, C, D, E, e F. Tomando dois vértices ao acaso, qual a probabilidade de eles serem extremos de uma diagonal do hexágono? Resp. 3/5
- 6. (AFA-SP) Dez vagas de um estacionamento serão ocupadas por seis carros, sendo: 3 pretos, 2 vermelhos e 1 branco. Considerando que uma maneira de isso ocorrer se distingue de outra tão somente pela cor dos carros, o total de possibilidades de os seis carros ocuparem as dez vagas é igual a: (Permutação com repetição)
- **→**a) 12 600.
- b) 16 200.
- c) 21 600.
- d) 26 100.
 - 7. (PUC-PR) Em um grupo de 200 pessoas, 120 são homens e 80 são mulheres. Se a probabilidade de um homem estar com uma determinada doença é de 0,07 e

de uma mulher estar com a mesma doença é de 0,12, qual é a probabilidade de uma pessoa deste grupo, escolhida ao acaso, estar com essa doença? Resp. 9%.

8. (Acafe-SC) Uma prova consta de 7 questões de múltipla escolha, com 4 alternativas cada uma, e apenas uma correta. Se um aluno escolher como correta uma alternativa ao acaso em cada questão, a probabilidade de que ele acerte ao menos uma questão da prova é de, aproximadamente de quanto? Resp 87%

MÓDULO 21 – NÚMEROS COMPLEXOS E POLINÔMIOS

- 1. Considere os números complexos z = 4 3i , w = -3 + i e v = 2i. Efetue as operações pedidas:
 - a) 3z 2w + z
 - b) z.w
 - c) v/z
 - d) $(v/2)^{2025}$
 - e) | z |
- 2. Determine o quociente e o resto da divisão de $p(x) = x^3 3x^2 + x 1$ por x-1
- 3. O número 2 é uma das raízes do polinômio $p(x) = x^3 2x^2 + 2x 4$. Calcule as outras raízes de p(x)
- 4. Qual o resto da divisão de $p(x) = 3x^4 2x^3 x^2 + 4x 5 por x^2 2x + 1$?

Respostas:

1.- a)
$$18 - 9i$$
 b) $-9 + 13i$ c) $-6/25 + 8/25i$ d) i 2. $q(x) = x^2 - 2x - 1$ e $r = -2$ 3. $\mp \sqrt{2}i$ 4. $8x - 9$

MÓDULO 22 – EQUAÇÕES POLINOMIAIS

- 1. O polinômio $P(x) = x^3 + mx^2 + px + q$ é tal que P(1) = P(2) = P(3) = 0. Qual o valor de m? Resp. m = -6
- 2. Quais são as raízes da equação $x^3 + x^2 + x + 1 = 0$? Resp. -1, i e -i.

MÓDULO 23 – ESTATÍSTICA DESCRITIVA

1) Enem - 2017

A avaliação de rendimento de alunos de um curso universitário baseia-se na média ponderada das notas obtidas nas disciplinas pelos respectivos números de créditos, como mostra o quadro:

Avaliação	Média de notas (M)		
Excelente	9 < <i>M</i> ≤ 10		
Bom	7 ≤ <i>M</i> ≤ 9		
Regular	5 ≤ <i>M</i> < 7		
Ruim	3 ≤ <i>M</i> < 5		
Péssimo	M < 3		

Quanto melhor a avaliação de um aluno em determinado período letivo, maior sua prioridade na escolha de disciplinas para o período seguinte.

Determinado aluno sabe que se obtiver avaliação "Bom" ou "Excelente" conseguirá matrícula nas disciplinas que deseja. Ele já realizou as provas de 4 das 5 disciplinas em que está matriculado, mas ainda não realizou a prova da disciplina I, conforme o quadro.

Disciplinas	Notas	Número de créditos
ı		12
II	8,00	4
III	6,00	8
IV	5,00	8
V	7,50	10

Para que atinja seu objetivo, a nota mínima que ele deve conseguir na disciplina I é

- a) 7,00.
- b) 7,38.
- c) 7,50.
- d) 8,25.
- e) 9,00.

2) Enem - 2017

Três alunos, X, Y e Z, estão matriculados em um curso de inglês. Para avaliar esses alunos, o professor optou por fazer cinco provas. Para que seja aprovado nesse curso, o aluno deverá ter a média aritmética das notas das cinco provas maior ou igual a 6. Na tabela, estão dispostas as notas que cada aluno tirou em cada prova.

Aluno	1 ^a Prova	2ª Prova	3ª Prova	4 ^a Prova	5ª Prova
Χ	5	5	5	10	6
Υ	4	9	3	9	5
Z	5	5	8	5	6

Com base nos dados da tabela e nas informações dadas, ficará(ão) reprovado(s)

- a) apenas o aluno Y.
- b) apenas o aluno Z.
 - c) apenas os alunos X e Y.
 - d) apenas os alunos X e Z.
 - e) os alunos X, Y e Z.

3. Enem - 2015

Em uma seletiva para a final dos 100 metros livres de natação, numa olimpíada, os atletas, em suas respectivas raias, obtiveram os seguintes tempos:

Raia	1	2	3	4	5	6	7	8
Tempo (segundo)	20,90	20,90	20,50	20,80	20,60	20,60	20,90	20,96

A mediana dos tempos apresentados no quadro é

- a) 20,70.
- b) 20,77.
- c) 20,80.
- d) 20,85.
- e) 20,90.

4. UPE - 2014

Numa competição esportiva, cinco atletas estão disputando as três primeiras colocações da prova de salto em distância. A classificação será pela ordem decrescente da média aritmética de pontos obtidos por eles, após três saltos consecutivos na prova. Em caso de empate, o critério adotado será a ordem crescente do valor da variância. A pontuação de cada atleta está apresentada na tabela a seguir:

Atleta	Pontuação - 1º salto	Pontuação - 2º salto	Pontuação - 3º salto		
Α	6	6	6		
В	7	3	8		
С	5	7	6		
D	4	6	8		
E	5	8	5		

Com base nas informações apresentadas, o primeiro, o segundo e o terceiro lugares dessa prova foram ocupados, respectivamente, pelos atletas

- a) A; C; E
 - b) B; D; E
 - c) E; D; B
 - d) B; D; C
 - e) A; B; D