TREINANDO PARA AS AVALIAÇÕES DO 1º BIMESTRE - PROF. OSMAR

1º ANO - ENSINO MÉDIO - QUESTÕES DA APOSTILA 01

POTÊNCIAS E RADICAIS - MÓDULO 1 E 2

- 1. A distância entre o Sol e a Terra é de 149 600 000 km. Quanto é esse número em notação científica? Resp.1,496.108 km
- 2. Em notação científica, a massa de um elétron em repouso corresponde a 9,11 x 10⁻³¹ kg e um próton, nessa mesma condição, tem massa de 1,673 x 10⁻²⁷ kg. Quem possui maior massa? Resp. próton (Sugestão: Deixar as potências de 10 com o mesmo expoente)
- 3. Sabendo que todas as expressões são definidas no conjunto dos números reais, determine o resultado para:
- a) $8^{2/3}$
- b) $\sqrt{(-4)^2}$ c) $\sqrt[3]{-8}$

Resp: a) 4 b) 4 c) -2 d) -3

- 4 . Simplifique os radicais e efetue as operações:
- a) $\sqrt{2} + \sqrt{32}$
- b) $\sqrt{27} + \sqrt{3}$
- c) $3\sqrt{5} + \sqrt{20}$
- d) $2\sqrt{2} + \sqrt{8}$
- e) $\sqrt{27} + 5\sqrt{3}$
- f) $2\sqrt{7} + \sqrt{28} =$

Resp.

a)5v2b)4v3c)5v5d)4v2e)8v3f)4v7

OUTROS EXERCÍCIOS

1. Calcule o valor de :

a)
$$7^2 =$$

b)
$$9^0 =$$

c)
$$-10^6 =$$

d)
$$(-10)^6 =$$

e)
$$(-3)^2 =$$

f)
$$(-3)^3 =$$

g)
$$(-3)^4 =$$

h)
$$(-0.3)^4$$
=

i)
$$\left(-\frac{3}{2}\right)^2 =$$

$$j) \quad \left(-\frac{3}{4}\right)^3 =$$

k)
$$(1,9)^2 =$$

m)
$$(-6)^{-1}$$
 =

p)
$$\left(\frac{2}{3}\right)^{-3} =$$

q)
$$\left(\frac{1}{3}\right)^{-4} =$$

r)
$$\left(\frac{4}{3}\right)^{-2}$$

2.- Simplifique usando as propriedades da potenciação:

a)
$$4^2 \times 4^5 \times 4^{-7} \times 4^3 =$$

b)
$$(3^2)^3 =$$

c)
$$2^{0} \times 2^{2} \times 2^{3} \times 2^{-6} \times 2^{5} =$$

d)
$$6^{12} \div 6^8 =$$

e)
$$3^4 \div 3^4 =$$

$$f)\left(\frac{2}{3}\right)^2 \cdot \left(\frac{2}{3}\right)^3 =$$

$$g)\bigg(\frac{1}{2}\bigg)^4 \div \bigg(\frac{1}{2}\bigg)^6 =$$

3) Classifique como verdadeiro (V) ou falso (F):

- a) () $2^7 \cdot 2^2 = 2^9$
- b) $(7^3)^2 = 7^5$
- c) () $2^{3^2} = (2^3)^2$
- d) $(5+2)^2 = 5^2 + 2^2$
- e) () $\frac{10^3}{10^5} = 10^{-2}$

4) Sendo $x = (2^2)^3$, $y = 2^{2^3}$ e $z = 2^{3^2}$, o valor de xyz é:

- a) 218
- b) 2²⁰
- c) 2^{23}
- d) 225

5) Qual é o valor de
$$y = \frac{(-5)^2 - 4^2 + \left(\frac{1}{5}\right)^0}{3^{-2} + 1}$$
?

6) Resolva a expressão
$$\left(\frac{1}{5}\right)^{-2} \cdot \left(\frac{2}{3}\right)^3 + 3^{-2} \cdot 3^5$$

7) Sendo $a = 2^7 \cdot 3^8 \cdot 7$ e $b = 2^5 \cdot 3^6$, o quociente de a por b é igual a :

- a) 252
- b) 36
- c) 126
- d) 48
- 8) Um número é expresso por $(2^6:2^4)+2^2$. Uma outra forma de expressar esse número é:
- a) 23
- b) 24
- c) 2º
- d) 25

MÓDULO 3- TÉCNICAS ALGÉBRICAS.

- 1.- Dado que (x + 1/x) = 12, calcule $x^2 + 1/x^2$ Resp. 142
 - 2. Dê a forma fatorada de:

a)
$$ax - 2x + ay - 2y$$

b)
$$x^2 - 4y^6 =$$

c)
$$x^2 - 4xy + 4y^2 =$$

d)
$$a^2 - 2ab + b^2 - 4c^2 =$$

e)
$$8x^3 - 1 =$$

f)
$$a^4 - b^4 =$$

3. Simplifique a expressão usando fatoração algébrica:

$$\frac{9,317^2 - 1,683^2}{9,317 - 1,683} =$$

4.- a) Escreva na forma desenvolvida a expressão algébrica;

a)
$$(\sqrt{x+y} + \sqrt{x-y})^2 =$$

Resp. 2. (x +
$$\sqrt{x^2 - y^2}$$
)

b) Se
$$x^2 - y^2 = 225$$
 , calcule x na equação ($\sqrt{x+y} + \sqrt{x-y}$) = 8. Resp. x = 17

Sugestão: Elevar os dois membros ao quadrado.

MÓDULO 4 – IGUALDADE E DESIGUALDADES.

- Simplifique as expressões abaixo, reduzindo os termos semelhantes.
 - a) (3x+2)+(5x-4).
 - b) (2y-3)-(4y-5)
 - c) (-5z+2x-6)+3(z+4x+2).
 - d) (2a-5b+3c)+(6a+2ab-3c).
 - e) -2(a-2b-3ab)-4(b+2a-2ab)
 - f) $\frac{(x-2)}{2} (2-x)$.
 - g) $\frac{2}{3}(2x-1)+\frac{4}{3}(2-x)$.
 - h) $\frac{1}{2}(x+2y-4)+\frac{1}{6}(3y-x+9)$.
 - i) $\frac{1}{2}(a-3ab+2b)-\frac{1}{3}(a-3b+ab)$.
- 2. Resolva as equações.
 - a) x 35 = 155.
 - b) y + 22 = 42.
 - c) v + 42 = 22.
 - d) 2x 3 = 25.
 - e) -3x + 2 = -7.
 - f) $\frac{3x}{5} = -\frac{4}{9}$.
 - g) $x \frac{2}{3} = \frac{1}{6}$
 - h) $\frac{a}{3} 5 = 2$.
 - i) $\frac{a-5}{2} = 2$.
 - 3(x-4)+8=5.
- Transforme os problemas em equações e os resolva.
 - a) Qual é o número que, quando somado a 3/4, resulta em 1/2?
 - b) Por quanto devemos multiplicar 2/3 para obter 5/4?
 - c) Dividindo um número por 2 e somando o resultado a 5, obtemos 8. Que número é esse?

- d) Somando o dobro de um número ao seu triplo, obtemos 125. Que número é esse?
- e) Qual é o número que, somado à sua quarta parte, fornece 15?
- f) Somando a metade de um número à terça parte desse mesmo número, obtemos 30. Qual é esse número?
- g) Somando três números consecutivos, obtemos 66. Quais são esses números?
- 4. Resolva as equações.
 - a) x + 12 = 2x 5.
 - b) 3y + 4 = -9y + 14.
 - c) 2(x-3) = 4(2x+1).
 - d) $x \frac{x}{6} = -3$.
 - e) 3.5x + 2 = 2.9x 1.
 - f) 3-3(x-2)=2x-(x-4).
 - g) 5(z+1)-2(3z+1)=4(5-z).
 - h) $\frac{4a-2}{3} = \frac{5(a+3)}{3}$.
 - i) $\frac{3x}{2} + 2 = 3x 2$.
 - j) $\frac{2x-3}{4} + \frac{x-1}{2} = \frac{5-x}{2}$
 - k) $\frac{x+2}{3} \frac{4-5x}{2} = \frac{3x-5}{4} + \frac{1}{3}$.

Nos exercícios escreva uma equação e resolva-a para determinar a resposta desejada.

5. Em determinada disciplina são aplicadas quatro provas, cujos pesos são 2, 2, 3 e 3. Dessa forma, a nota final é dada pela fórmula NF = (2P₁+2P₂+3P₃+3P₄)/10. Quanto um aluno precisa tirar na última prova para ficar com nota 5 se suas notas nas três primeiras provas foram, respectivamente, 4; 4,5 e 6?

- 6. Um barbante com 50 m de comprimento foi dividido em duas partes. Se a primeira parte era 15 m menor que a outra, quanto media a parte menor?
- A largura de um terreno retangular é igual a um terço da profundidade. Se o perímetro do terreno é igual a 120 m, determine suas dimensões.
- 8. João e Marcelo passaram alguns meses guardando dinheiro para comprar uma bicicleta de R\$ 380,00. Ao final de 6 meses, os dois irmãos haviam juntado o mesmo valor, mas ainda faltavam R\$ 20,00 para pagar a bicicleta. Determine quanto dinheiro cada um conseguiu poupar.
- Quando nasci, minha mãe tinha 12 cm a mais que o triplo de minha altura. Se minha mãe tem 1,68 m, como àquela época, com que altura eu nasci?
- 10. Fernanda e Maria têm, respectivamente, 18 e 14 anos. Daqui a quantos anos a soma das idades das duas atingirá 80 anos?
- 11. Em um torneio de tênis, são distribuídos prêmios em dinheiro para os três primeiros colocados, de modo que o prêmio do segundo colocado é a metade do prêmio do primeiro, e o terceiro colocado ganha a metade do que recebe o segundo. Se são distribuídos R\$ 350.000,00, quanto ganha cada um dos três premiados?

1. 1.- Resolva as inequações dadas.

f)
$$x + 1 \ge -1$$
.

g)
$$-x \le 6$$
.

h)
$$3 \ge -9x$$
.

i)
$$-\frac{w}{4} > \frac{5}{8}$$

j)
$$-2y + 3 < 7$$
.

k)
$$5v - 32 \le 4 - 7v$$
.

1)
$$2-z > 3(z+3)$$
.

m)
$$2(3x+1) < 4(5-2x)$$
.

n)
$$3(3x-2)+2(x+\frac{1}{2}) \le 19-x$$
.

o)
$$\frac{3x}{2} + \frac{x}{3} + \frac{x}{6} > 0$$
.

p)
$$\frac{1}{3} + \frac{x}{2} < \frac{5}{6} - \frac{2x}{3}$$
.

q)
$$\frac{3x+1}{4} - 1 \ge \frac{1}{2} - 2x$$
.

r)
$$\frac{1-2x}{3} + \frac{x-2}{6} > \frac{x+3}{2} - 1$$
.

Resolva as inequações.

a)
$$1 < 2x < 3$$
.

b)
$$-3 \le 4x \le 8$$
.

c)
$$-1 \le x + 2 \le 5$$
.

d)
$$0 \le 2x - 2 \le 6$$
.

e)
$$-6 \le -2(x-1) \le 0$$
.

f)
$$2 \le \frac{x}{3} < 4$$
.

g)
$$-3 < \frac{3x}{2} \le 6$$
.

Respostas.

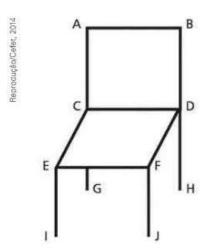
- 1. a. 8x 2; b. 2 2y; c. 14x 2z; d. 8a 5b + 2ab; e. -10a + 14ab; $f. \frac{3x}{2} 3$; g. 2; $h. \frac{x}{3} + \frac{3y}{2} \frac{1}{2}$; $i. \frac{a}{6} + 2b \frac{11ab}{5}$.
- 2. a. x = 190; b. y = 20; c. y = -20; d. x = 14; e. x = 3; f. $x = -\frac{20}{27}$; g. $x = \frac{5}{6}$; h. a = 14; i. a = 9; j. x = 3.
- 3. $a. x + \frac{3}{4} = \frac{1}{2} \rightarrow x = -\frac{1}{4};$ $b. \frac{2}{3}x = \frac{5}{4} \rightarrow x = \frac{15}{8};$ $c. \frac{x}{2} + 5 = 8 \rightarrow x = 6;$ $d. 2x + 3x = 125 \rightarrow x = 25;$ $e. x + \frac{x}{4} = 15 \rightarrow x = 12;$ $f. \frac{x}{2} + \frac{x}{3} = 30 \rightarrow x = 36;$ $g. x + (x + 1) + (x + 2) = 66 \rightarrow x = 21.$ Os números são 21, 22 e 23.
- 4. a. x = 17; b. y = 5/6; c. x = -5/3; d. x = -18/5; e. x = -5; f. x = 5/4; g. z = 17/3; h. a = -7; i. x = 8/3; j. x = 5/2; k. x = 1/5.
- 5. Nota 5.
- 6. A parte menor media 17,5 cm.
- 7. O terreno tem 15 m x 45 m.
- 8. Cada um poupou R\$ 180,00.
- 9. Nasci com 52 cm.
- 10. Dagui a 24 anos.
- O terceiro colocado ganha R\$ 50.000,00, o segunda ganha R\$ 100.000,00 e o campeão leva R\$ 200.000,00.

Inequações:

1.-

$$\begin{array}{lll} & \text{f. } x \geq -2;\\ & \text{g. } x \geq 6; & \text{h. } x \geq -1/3; & \text{i. } w < -5/2;\\ & \text{j. } y > -2; & \text{k. } v \leq 3; & \text{l. } z < -7/4;\\ & \text{m. } x < 9/7; & \text{n. } x \leq 2; & \text{o. } x > 0;\\ & \text{p. } x < 3/7; & \text{q. } x \geq 5/11; & \text{r. } x < -1/2.\\ & \text{2. } \text{a.} \frac{1}{2} < x < \frac{3}{2}; & \text{b.} -\frac{3}{4} \leq x \leq 2; & \text{c.} -3 \leq x \leq 3;\\ & \text{3. } \text{d. } 1 \leq x \leq 4; & \text{e. } 1 \leq x \leq 4;\\ & \text{f. } 6 \leq x < 12; & \text{g.} -2 < x \leq 4; \end{array}$$

MÓDULO 1: INTRODUÇÃO AO UNIVERSO TRIMIDENSIONAL.

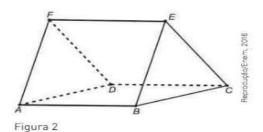

Assinale V ou F as afirmativas abaixo:

- 1. Se uma reta está contida num plano, a reta e o plano têm infinitos pontos comuns.
- 2. Uma reta e um plano secantes têm um ponto comum.
- 3. Uma reta e um plano que têm um ponto comum são concorrentes (secantes).
- 4. Uma reta e um plano paralelos não têm ponto comum.
- 5. Dois planos distintos que têm uma reta comum são secantes.
- 6. Dois planos secantes têm infinitos pontos comuns.
- 7. Se dois planos são secantes, então qualquer reta de um deles é concorrente ao outro.
- 8. Se dois planos distintos são paralelos, qualquer reta de um deles é paralela ao outro.
- 9. Duas retas distintas que têm um ponto comum são concorrentes.
- 10. Duas retas distintas que não têm ponto comum, são paralelas.
- 11. Duas retas concorrentes são coplanares.
- 12. Duas retas coplanares são concorrentes.
- 13. Duas retas paralelas estão sempre num plano.
- 14. Duas retas que estão num plano são paralelas.
- 15. Duas retas distintas não paralelas, são concorrentes.
- 16. Duas retas que não têm ponto comum são reversas.
- 17. Duas retas reversas não têm ponto comum.
- 18. Duas retas não coplanares são reversas.
- 19. Duas retas coplanares são paralelas.
- 20. Duas retas distintas e não concorrentes determinam um único plano que as contém.
- 21. Se uma reta é paralela a um plano, então ela é paralela a qualquer reta do plano.
- 22. Se um plano é paralelo a uma reta r, qualquer reta do plano é reversa à reta r.
- 23. Se uma reta e um plano são concorrentes, então a reta é concorrente com qualquer reta do plano.
- 24. Se uma reta e um plano são secantes, então a reta é reversa a qualquer reta do plano.
- 25. Se uma reta r é paralela a um plano, no plano existe reta paralela à reta r.
- 26. Se uma reta r é secante a um plano, no plano existe reta paralela à reta r.

- 27. Se dois planos são secantes, uma reta de um deles pode ser reversa com uma reta do outro.
- 28. Se dois planos distintos são paralelos, uma reta de um deles e uma reta do outro podem ser concorrentes.
- 29. Se dois planos são secantes, uma reta de um deles e uma reta do outro podem ser concorrentes.

X	0	1	2	3	4	5	6	7	8	9
0	X	٧	٧	F	٧	٧	٧	F	٧	٧
1	F	٧	F	٧	F	F	F	٧	٧	F
2	F	F	F	F	F	٧	F	٧	F	٧

(Cefet-MG) A figura a seguir representa uma cadeira onde o assento é um paralelogramo perpendicular ao encosto


A partir dos pontos dados, é correto afirmar que os segmentos de retas:

- \bigcirc $ar{CD}$ e $ar{EF}$ são paralelos
- \bigcirc $ar{BD}$ e $ar{FJ}$ são concorrentes
- \bigcirc \bar{AC} e \bar{CD} são coincidentes
- \bigcirc $ar{AB}$ e $ar{EI}$ são perpendiculares

(Enem) Um grupo de escoteiros mirins, numa atividade no parque da cidade onde moram, montou uma barraca conforme a foto da Figura 1. A Figura 2 mostra o esquema de estrutura dessa barraca, em forma de um prisma reto, em que foram usadas hastes metálicas.

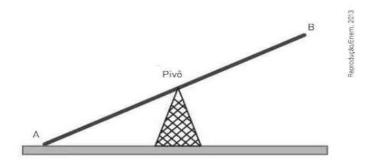
Figura 1

Após a armação das hastes, um dos escoteiros observou um inseto deslocar-se sobre

elas, partindo do vértice A em direção ao vértice B, deste em direção ao vértice E e, finalmente, fez o trajeto do vértice E ao C.

Considere que todos esses deslocamentos foram feitos pelo caminho de menor

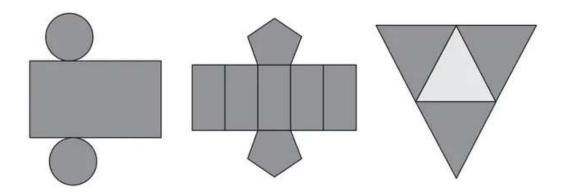
A projeção do deslocamento do inseto no plano que contém a base ABCD é dada por


distância entre os pontos.

O O Security D Securit

Resp E

(Enem) Gangorra é um brinquedo que consiste de uma tábua longa e estreita equilibrada e fixada no seu ponto central (pivô). Nesse brinquedo, duas pessoas sentam-se nas extremidades e, alternadamente, impulsionam-se para cima, fazendo descer a extremidade oposta, realizando, assim o movimento da gangorra. Considere a gangorra representada na figura, em que os pontos A e B são equidistantes do pivô:


A projeção da trajetória dos pontos A e B, sobre o plano do chão da gangorra, quando esta se encontra em movimento, é:

Resp B

MÓDULO 2: SÓLIDOS GEOMÉTRICOS

Questão 1 – (Enem 2012) Maria quer inovar em sua loja de embalagens e decidiu vender caixas com diferentes formatos. Nas imagens apresentadas estão as planificações dessas caixas.

Quais serão os sólidos geométricos que Maria obterá a partir dessas planificações?

- A) Cilindro, prisma de base pentagonal e pirâmide.
- B) Cone, prisma de base pentagonal e pirâmide
- C) Cone, prisma de base pentagonal e pirâmide.
- D) Cilindro, tronco de pirâmide e prisma.
- E) Cilindro, prisma e tronco de cone.

Resp A

2

A planificação de um sólido geométrico é uma figura geométrica bidimensional formada pela superfície de objetos tridimensionais. Assim, a planificação de uma pirâmide de base pentagonal será formada por:

- a) Dois pentágonos e cinco retângulos congruentes.
- b) Dois pentágonos e cinco retângulos.
- c) Um pentágono e cinco triângulos congruentes.
- d) Um pentágono e cinco triângulos.
- e) Um pentágono e cinco triângulos equiláteros.

Resp. D

- A planificação de um sólido geométrico é uma figura geométrica plana obtida a partir da superfície do sólido em questão. Assinale, das alternativas a seguir, aquela que contém as figuras bidimensionais obtidas da planificação do cone reto.
- a) Um triângulo e uma circunferência.
- b) Um triângulo e um círculo.
- c) Um setor circular e uma circunferência.
- d) Um setor circular e um círculo.
- e) Um setor circular e um triângulo.

Resp D

- 4.-Sabendo que um poliedro possui 20 vértices e que em cada vértice se encontram 5 arestas, determine o número de faces dessa figura. Resp. 32
- 5. Sabendo que em um poliedro o número de vértices corresponde a 2/3 do número de arestas, e o número de faces é três unidades menos que o de vértices. Calcule o número de faces, de vértices e arestas desse poliedro. Resp 7, 15 e 10
- 6. O número de faces de um poliedro convexo de 22 arestas é igual ao número de vértices. Então, qual o número de faces do poliedro? Resp. 12

MÓDULO 3 – PRISMAS

Ver respostas abaixo

Questão 1

Qual o volume de concreto utilizado na construção de uma laje de 80 centimetros de espessura em uma sala com medidas iguais a 4 metros de largura e 6 metros de comprimento?

Ver Resposta

Questão 2

Um prisma de base quadrangular possui volume igual a 192 cm³. Determine sua altura sabendo que ela corresponde ao triplo da medida da aresta da base.

Ver Resposta

Questão 3

Uma caixa de papelão será fabricada por uma indústria com as seguintes medidas: 40 cm de comprimento, 20 cm de largura e 15 cm de altura. Essa caixa irá armazenar doces na forma de um prisma com as dimensões medindo 8 cm de comprimento, 4 cm de largura e 3 cm de altura. Qual o número de doces necessários para o preenchimento total da caixa fabricada?

Questão 4 (UFOP-MG) A área total de um cubo cuja diagonal mede 5√3 cm é: a) 140 cm² b) 150 cm² c) 120√2 cm² d) 100√3 cm² e) 450 cm²

Questão 5

(FEI-SP)

As medidas das arestas de um paralelepipedo retângulo são proporcionais a 2, 3 e 4. Se sua diagonal mede 2√29 cm, seu volume, em centimetros cúbicos, é:

- a) 24
- b) 24\29
- c) 116
- d) 164
- e) 192

Resp. $1 - 19.3 \text{ cm}^3 - 2.12 \text{ cm} \cdot 3.125 - 4.B - 5-E$

MÓDULO 4 – PARALELEPÍPEDOS E CUBOS

Questão 1

Um sólido geométrico é classificado como paralelepipedo quando:

- A) ele possui faces opostas paralelas.
- B) ele é um prisma, independentemente da sua base.
- C) ele possui uma face no formato de um paralelogramo.
- D) ele possui todas as faces formadas por paralelogramos.

Ver Resposta

Questão 2

Um recipiente de madeira será construido no formato de um paralelepípedo retangular, com 7 metros de largura, 4 metros de comprimento e 2 metros de altura. Sabendo que serão gastos R\$ 32,00 por metro quadrado desse recipiente, o valor necessário para a sua fabricação será de:

- A) R\$ 320,00
- B) R\$ 350,00
- C) R\$ 500,00
- D) R\$ 640,00
- E) R\$ 720,00

Questão 3

A diagonal de um paralelepípedo retângulo é de 12,5 cm. Considerando que a sua largura é de 6 cm e que o seu comprimento é de 8 cm, qual é a medida da altura?

A) 7,0 cm

B) 7.5 cm

C) 8,0 cm

D) 8,5 cm

E) 9,5 cm

Ver Resposta

Questão 4

Um paralelepípedo possui base quadrada com lados medindo 6 cm e altura igual a 7 cm. Nessas condições, a medida da diagonal desse paralelepípedo é igual a:

A) 8 cm

B) g cm

C) 10 cm

Questão 1

Um determinado recipiente possui formato de cubo, com arestas medindo 7 cm. Então o volume desse recipiente é de:

A) 7 cm³

B) 49 cm³

C) 196 cm³

D) 294 cm³

E) 343 cm³

Ver Resposta

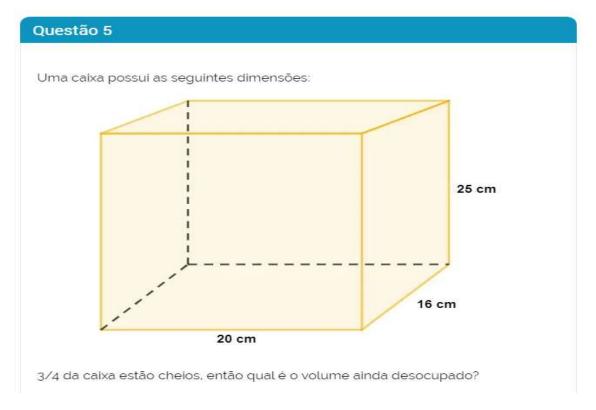
Questão 2 A área da base de um cubo é igual a 12 cm², então o volume desse cubo, em cm³, é de: A) $12\sqrt{3}$ B) $18\sqrt{2}$ C) $24\sqrt{3}$ D) $36\sqrt{2}$ E) 1728

Questão 3

A soma das arestas de um cubo é igual a 132 cm. Então o volume desse cubo é igual a:

A) 11 cm³

B) 121 cm ³


C) 484 cm³

D) 1331 cm³

E) 1728 cm³

RESP-1E 2C 3D

D) 11 cm
E) 12 cm
Ver Resposta

Resp. 1-D 2- A 3- B 4- D 5- 2.000 cm³

MÓDULO 5 – CILINDROS.

Questão 1 Um cilindro possui raio medindo 5 cm e altura igual a 8 cm, então sua área total é de: (Use π = 3.) A) 390 cm² B) 350 cm² C) 310 cm² D) 280 cm² E) 250 cm² Ver Resposta

Questão 2

Um recipiente possui formato de cilindro com área igual a 720 π cm². Se o raio desse cilindro é de 12 cm, então sua altura é de:

A) 16 cm

B) 18 cm

C) 20 cm

D) 22 cm

E) 24 cm

Ver Resposta

Questão 3

Uma caixa d'água terá a sua área lateral pintada, e para realizar a pintura é necessário calcular essa área. Seu diâmetro é de 1,20 metro e sua altura é de 1,40 metro, então a área lateral dessa caixa é de:

A) 1,50 π m^2

B) $1,56 \pi m^2$

C) 1,68 π m²

D) 1,72 π m² E) 1,83 π m²

Ver Resposta

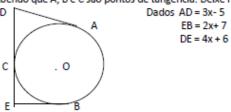
Questão 4

Um porta-joias possui formato cilíndrico, com área total igual a 244,92 cm². Se a altura desse porta-joias é de 10 cm, o raio dessa embalagem é de:

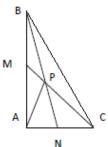
(Use π = 3.14.)

A) 2 cm

B) 3 cm

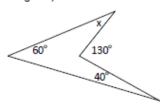

C) 4 cm

D) 5 cm

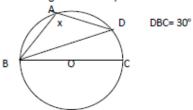

E) 6 cm

Resp. 1 - A 2-B 3-C-4-B

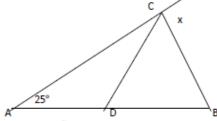
1. - Calcule x, sabendo que A, B e C são pontos de tangência. Deixe registrado como pensou.

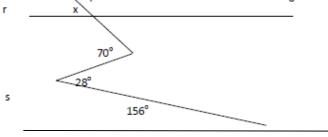


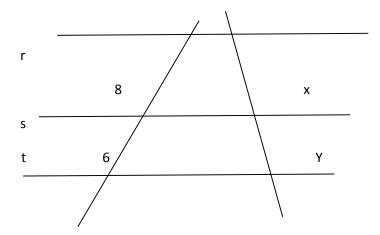
- Considere o triângulo retângulo em A, e seja M e N pontos médios de AB e AC, respectivamente.
 Se a medida de BC = 18 cm, calcule a medida de AP, sendo P ponto de intersecção das medianas. Deixe registrado como pensou.



3.- Nas figuras , calcule o valor da medida de x, em graus. Deixe registrado como pensou.

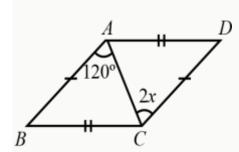

a)


b)

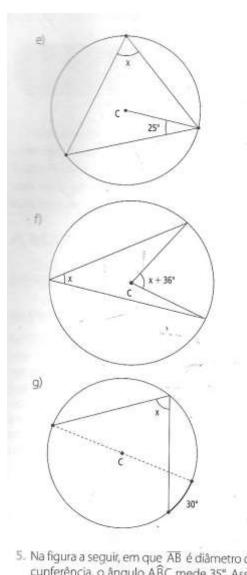

4. Considere na figura AD = CD e BD = BC , Calcule a medida de x, em graus. Deixe registrado como pensou.

5. As retas r e s são paralelas. Determine a medida de x. Deixe registrado como pensou.

6- (UFRJ) – Pedro está construindo uma fogueira representada pela figura abaixo. Ele sabe que a soma de x com y é 42 e que as retas r, s e t são paralelas. Calcule a diferença x – y.

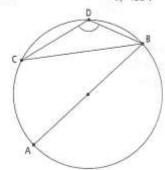


RESPOSTAS DO EXERCÍCIO1 AO 6

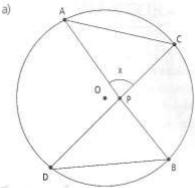

- 1. X=4
- 2. AP=6
- 3. A)x=30º B) x=120º
- 4. X= 105º
- 5. X=66º
- 6. x y = 6
- 7. Para descobrir a altura de um prédio, Luiz mediu a sombra do edifício e, em seguida, mediu sua própria sombra. A sombra do prédio media 7 metros, e a de Luiz, que tem 1,6 metros de altura, media 0,2 metros. Qual a altura desse prédio?

Resp. 56 m

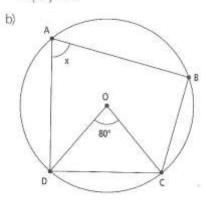
8. Na figura, o triângulo ABC é congruente ao triângulo CDA. Qual o valor de x? Resp 60°



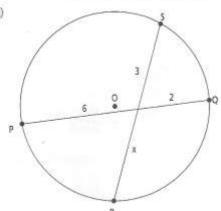
9.- Calcule o valor de x nas situações abaixo em que C indica o centro de cada circunferência.


5. Na figura a seguir, em que AB é diâmetro da circunferência, o ângulo ABC mede 35". Assim, o ângulo BDC mede:

- a) 105°.
- c) 125°.
- b) 115°.
- d) 135°,

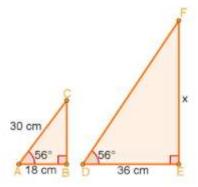

5)C

6. Em cada figura, determine o valor de x, registrando como pensou.


 $m(\widehat{AD})=100^{\circ}$

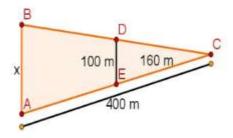
$$m(\widehat{BC}) = 96^{\circ}$$

 $m(\widehat{CB})=70^{\circ}$


7. Determine o valor de x nas figuras abaixo.

Resp. e) 65⁰ f)36⁰ g) 75° 6) a)82° b)75° f) a) x=4

8. Considere um triângulo ABC, retângulo em A, de catetos AC = 12 cm e AC = 16 cm. Pede-se calcular a altura desse triângulo relativa à sua hipotenusa. Resp. 9,6 cm


Qual o valor de x nos triángulos a seguir?

Resp. 48

10.-

Na imagem a seguir, é possivel perceber dois triângulos que compartilham parte de dois lados. Sabendo que os segmentos BA e DE são paralelos, qual a medida de x?

Resp . 250 11.-

O dono de um sitio pretende colocar uma haste de sustentação para melhor firmar dois postes de comprimentos iguais a 6 m e 4 m. A figura representa a situaçi real na qual os postes são descritos pelos segmentos AC e BD e a haste é representada pelo segmento EF, todos perpendiculares ao solo, que é indicado pelo segmento de reta AB. Os segmentos AD e BC representam cabos de aço que serão instalados.

Qual deve ser o valor do comprimento da haste EF?

- (A) 1 m
- B 2 m
- c 2,4 m
- D 3 m
- € 2v6 m

Resp. 2,4 m

MATEMÁTICA C

Aula 1- Potenciação e Radiciação

1.

(G1 – EPCAR [CPCAR], 2011) Simplificando-se a expressão

$$S = \frac{\left(x^{-2}\right)^{2^{2^{2}}} \cdot \left[\left(-x^{-2}\right)^{3^{2^{2}}}\right]^{-1}}{x^{2^{3}} \cdot \left[\left(-x^{3}\right)^{3^{2}}\right]^{2^{3}}}$$

onde $x \neq 0$, $x \neq 1$ e $x \neq -1$, obtém-se

- a)-x⁻⁹⁴
- b) x⁹⁴
- c) x⁻⁹⁴
- d) $-x^{94}$

Gabarito: A

2.

(G1 – CFTMG, 2010) Segundo estimativas do IBGE, em 2009, o Brasil tinha, aproximadamente, 190 milhões de habitantes espalhados pelas suas 27 unidades da Federação e 5.565 municípios. A tabela seguinte mostra o número aproximado de habitantes em algumas capitais brasileiras.

Capitais	Nº de habitantes
Belo Horizonte	2.400.000
Brasília	2.600.000
Rio de Janeiro	6.000.000
São Paulo	11.000.000

Com base nesses dados, é correto afirmar que, aproximadamente, habitantes estão distribuídos em
A opção que completa corretamente as lacunas acima é:
a) 1,68 x 10 ⁸ , 5.561 municípios.
b) 2,45 x 10 ⁷ , 5.561 municípios.
c) 7,52 x 10 ⁶ , Belo Horizonte e Brasília.
d) 7,10 x 10 ⁶ , Belo Horizonte e São Paulo.
3.
(UFMG, 2003) O valor da expressão (a ⁻¹ + b ⁻¹) ⁻² é:
a) $[ab/(a + b)^2]$
b) $[ab/(a^2 + b^2)^2]$
c) $a^2 + b^2$
d) $[a^2b^2/(a + b)^2]$
4.
(G1 – CPS 2005) Um grupo de alunos do Ensino Técnico realizou um trabalho de pesquisa para determinar a área da superfície do corpo humano de jovens de 15 a 20 anos. Chegaram à conclusão de que a área varia, aproximadamente, de acordo com a fórmula matemática S = 0,12. $\sqrt[3]{m^2}$
, em que S é a área (m²) e m a massa do corpo humano (kg). A área aproximada da superfície do corpo de um aluno de massa 70 kg, em m² é:
a) 3,0
b) 2,5
c) 2,0
d) 1,5
e) 1,0

Aulas 2 a 3 - Razão e Proporção- Grandezas Diretamente e Inversamente Proporcionais.

- 1.(UFOP-MG-2008) Duas torneiras são utilizadas para encher um tanque vazio. Sabendo que sozinhas elas levam 10 horas e 15 horas, respectivamente, para enchê-lo. Quanto tempo as duas torneiras juntas levam para encher o tanque?
 - A) 6 horas; B) 12 horas e 30 minutos; C) 25 horas; D) 8 horas e 15 minutos.
- 2.(Unicamp-SP) A quantia de R\$ 1.280,00 deverá ser dividida entre 3 pessoas. Quanto receberá cada uma, se A) a divisão for feita em partes diretamente proporcionais a 8, 5 e 7? B) a divisão for feita em partes inversamente proporcionais a 5, 2 e 10?
- 3. (Sejus ES 2013 Vunesp). Em uma população carcerária de 14 400 presos, há 1 mulher para cada 11 homens nessa situação. Do total das mulheres, 2/5 estão em regime provisório, correspondendo a
- (A) 840 mulheres. (B) 480 mulheres. (C) 1200 mulheres. (D) 640 mulheres.
- (E) 450 mulheres.
- 4.- (PM SP 2012). Uma pessoa comprou determinado volume de suco de uva, bebendo 200 mL desse suco por dia. Se essa pessoa bebesse 150 mL por dia, com o mesmo volume comprado, poderia beber suco de uva por mais 5 dias. O volume de suco de uva, em litros, comprado por essa pessoa foi
- a) 2
- b) 2,5
- c) 3
- d) 3,5
- e) 4
- 5.- (Bombeiros ES 2011 Cespe). Os salários mensais de Carlos e Paulo são diretamente proporcionais aos números 23 e 47, respectivamente, e somam R\$ 7.000,00. A respeito dessa situação hipotética, julgue os itens a seguir.
- a) O salário de Paulo é inferior a R\$ 4.600,00.
- **b)** O salário de Carlos é superior a R\$ 2.200,00.
- 6. (Fuvest) Os lados de um retângulo de área 12 m² estão na razão 1:3. Qual o perímetro do retângulo?

a) 8m b) 12 m c) 16 m d) 20m e) 24 m

Resp.-1 – 6 horas 2 . A) 512,320 e 448 B) 320, 800 e 160. 3. B 4) C 5) B é correta. 6) C

AULA 4 – PORCENTAGEM

1. Calcule:

a) (20%)²

b) 10% . 30 % = c) $\sqrt{16\%}$ =

Resp. a) 4% b) 3% c) 40%

PROBLEMAS

1. Qual o montante, após dois anos, em uma aplicação que rende 10% ao semestre (juros compostos), sabendo que o capital inicial aplicado foi de R\$ 20.000,00 ? Resp. R\$ 29.282,00

- 2. Se o preço de um produto aumentou 5% anteontem e 8% hoje, então, de anteontem para hoje quantos % esse preço aumentou? Resp. 13,4%
- 3. Certo smartphone, quando novo, desvaloriza 10% no primeiro ano e, depois, 5% a cada ano. Se seu preço novo é de R\$ 2.000,00, qual será seu preço após 3 anos? Resp. R\$ 1. 624,50
- 4. Um vendedor de imóveis oferece a um cliente um terreno por R\$132.000,00 à vista. O negócio também pode ser realizado pagando duas parcelas iguais de x reais, sendo a primeira no ato da compra e a segunda exatamente um ano após. Determine o valor de x, dado que há juros de 20% ao ano sobre qualquer saldo devedor. Resp x= R\$72.000,00